DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 1

Developer Productivity in the Age of Generative AI: A Psychological Perspective

Rob Edwards
Department of Psychology
Northumbria University

Word Count: 8,521

Author Note

An MSc thesis submitted in partial fulfilment of the requirements for the degree of

MSc Psychology.



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 2

Abstract

Generative Al is profoundly reshaping developers’ daily work, yet its psychological impact is
still poorly understood. This study tackles that gap, exploring how senior engineers are
renegotiating their professional identities as they integrate Al into their workflows. Through
thematic analysis of interviews with 12 senior software and platform engineers, this research
found a central theme of redefinition: developers are shifting from hands-on coders to
high-level conductors of Al-driven systems. This transformation is driven by three core
findings: (1) a fundamental re-architecting of cognitive focus from low-level implementation
to high-level strategic thinking; (2) a consequent re-evaluation of productivity, shifting from
metrics of output to measures of outcome and impact; and (3) the emergence of Al as a
double-edged tool for agency, which balances the empowerment of new capabilities against
profound anxieties about de-skilling and professional worth. The study concludes that
navigating this new landscape requires more than just technical skill. Success now depends
on a renewed focus on the uniquely human capacities for critical oversight and strategic
thought.

Keywords: Generative Al, Software Engineering, Platform Engineering, Developer

Productivity, Agency, Skill Development



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 3

Developer Productivity in the Age of Generative AI: A Psychological Perspective
Introduction

Generative artificial intelligence (Al) is not just another tool, it is fundamentally
changing knowledge work, particularly software development (Daniloaia & Turturean, |2024;
V. C. Storey et al., 2025)). Software development has always relied on complex
problem-solving and tools designed to boost human capabilities (Meyer et al., 2017)), however
Al provides us with much more than a small evolution. It marks a genuine paradigm shift.
With stunning speed this technology has jumped from a niche specialty to a ubiquitous
assistant. Tools that write, explain, and check code are now embedded directly into
developers’ core workflows, from their Integrated Development Environments (IDEs) to their
command-line interfaces (DeBellis et al., 2025; Nguyen-Duc et al., 2023)).

This is not just an incremental update, it is a massive economic and behavioural shift.
Framed as cognitive aids (Noda et al., [2023), these systems become a cognitive partner that
actively replaces old work patterns (Gérmez et al., [2024; Shihab et al., 2025). A systematic
review covering 395 research articles confirms this is not just hype; it is a major
well-documented transformation (Hou et al., 2024). However, the latest industry research
suggests a more nuanced reality, framing Al not as a simple productivity panacea but as a
powerful amplifier (DeBellis et al., 2025)). The core message is that Al amplifies existing
team dynamics and organisational cultures, for better or worse. High-performing teams with
clear goals, strong communication, and effective workflows will likely see their success
magnified. Conversely, teams struggling with technical debt or poor communication may find
that Al exacerbates these dysfunctions. This amplifier effect makes it a critical catalyst,
intensifying the very tensions this thesis will explore.

The technology industry is championing a narrative of huge productivity gains, but
the actual evidence is still complex and contested. This optimism conveniently ignores a
deep, long-standing tension in software development: a conflict between how developer

productivity is measured and how it is experienced. For decades the industry’s focus on



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 4

simplistic, output-centric metrics has been in direct conflict with the developer’s core
psychological need for agency, their sense of ownership, mastery, and autonomy (Deci &
Ryan, 2000; Meyer et al., [2014)). Al is not creating this problem; it is acting as a powerful
catalyst on this unresolved tension, forcing an urgent re-examination of both.

Consider the first half of this tension, the challenge of developer productivity (Jaspan
& Green, [2023). For decades, the industry has struggled to measure this, often resorting to
simplistic and misleading metrics like "lines of code" or "story points" (Forsgren et al., |2018;
Meyer et al., 2014). These metrics proved deeply flawed. They incentivized quantity over
quality (a classic example of Goodhart’s Law), failed to capture the value of "invisible" work
like mentoring or debugging, and ultimately demoralized developers (Fowler, 2003). This
failure forced a shift towards more holistic, multidimensional, models like the SPACE
framework (Forsgren et al., 2021)) which mandates that metrics move beyond simple output
to include Satisfaction and Well-being, Performance, Activity, Communication and
Collaboration, and Efficiency and Flow (SPACE). This aligns with the broader psychological
perspective where productivity is not just output, but the effective pursuit of valued goals
while maintaining well-being and considers effectivness (Graziotin et al., 2015; Jaspan &
Green, 2023; Zelenski et al., [2008). Al now threatens to upend this human-centric view,
raising new questions. For instance, who really owns the code now? Is it the developer, the
Al or the team? We also do not know if developers will focus on their own contributions or
on the team’s overall success. This remains a critical, unexamined question.

Running in parallel to productivity, the Al-driven shift also strikes at the other half
of the tension; a developer’s fundamental sense of agency. This is not a peripheral concern, it
is a core psychological requirement. Decades of research in Self-Determination Theory (SDT)
establish that human motivation, performance, and well-being are founded on three basic

psychological needs (Deci & Ryan, |2000):

1. Autonomy: The need to feel volitional and be the author of one’s choices.

2. Competence: The need to feel effective and experience mastery.



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 5

3. Relatedness: The need to feel connected to and valued by others.

These factors are the established bedrock of developer motivation and job satisfaction
(DeBellis et al., 2024; M.-A. Storey et al., 2021). Al introduces a direct conflict with each of
these foundational needs. It challenges autonomy by blurring the lines of authorship. It
threatens competence by automating fundamental tasks, raising a huge question: is Al a tool
for leverage, or a substitute that makes personal accomplishments feel smaller (Debellis et al.,
2025; Noda et al., 2023)7 Finally, it has the potential to disrupt relatedness by altering the
critical human-to-human collaboration and mentorship that defines software development.
This forces a hard look at what it means to be a developer in an Al-augmented future.

This challenge to the developer’s future is precisely where a major gap has opened
between their daily reality and the research community’s ability to study it. Because this
technology is moving so fast, we need to capture first-hand accounts from the field to
understand what is actually happening. While industry reports might show productivity
numbers (DeBellis et al., 2025), they do not fully explain the psychological impact on the
developers using these tools every day. This leaves a crucial blind spot; we do not
understand how developers are making sense of their new workflow or what it means for
their professional identity, job satisfaction, and well-being. That is the gap this study
addresses. Using thematic analysis, this research explores how Al is reshaping developers’
views on productivity and agency. Our approach is guided by critical realism, which means
we are not just describing experiences but seeking to uncover their underlying causes
(Wiltshire & Ronkainen, [2021). A qualitative study is essential for this work; numbers alone
simply cannot capture the rich, contextual story that emerges from developers’ own words.

To explore these issues, this study uses semi-structured interviews with software and

platform developers, focusing on three key questions:

1. How do developers describe and evaluate their productivity (for both themselves and

their teams) when using Al tools?



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 6

2. How does using Al affect a developer’s sense of ownership, path to skill mastery, and

autonomy?

3. How does a developer’s primary focus (individual output vs. team output) shape their

experience and perception of Al’s impact?

If organisations want Al to deliver real value for their developers, they cannot ignore
the human side of the equation. Understanding the psychological factors at play is not just
an afterthought; it is central to making human-Al collaboration effective. This is the only
way to properly leverage these new tools while maintaining team productivity and
motivation (Ralph et al.,2020). This research investigates that human dimension, how Al

adoption truly feels and functions for the developers on the ground.
Method
Study Design

I chose a qualitative research design grounded in a critical realist
epistemology (Creswell & Creswell, 2017)). This perspective assumes that while our
understanding of reality is always filtered through personal interpretation, these
interpretations point to real, underlying structures and causes.

This approach was perfect to meet my primary research goal: to understand
developers’ lived experiences as they integrated generative Al tools into their work. I focused
specifically on how these tools affect developers’ sense of productivity and agency.

I define a developer as any professional directly involved in the software development
lifecycle. This includes both software engineers, who write application code, and platform (or
DevOps) engineers, who build and maintain the infrastructure that code runs on.

My main data collection method was semi-structured interviews. This method is
ideal for critical realism because it helps move beyond a person’s surface-level experiences to
uncover the deeper mechanisms that cause them. A survey might capture broad opinions,

but interviews allowed for a flexible, in-depth conversation. This flexibility was crucial, it



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 7

gave participants the space to focus on what they felt was important and allowed me to dig
deeper into the why behind their experiences. This process was essential for gathering the
rich, contextual data needed to understand the underlying nature of agency and productivity

in this new landscape (Braun & Clarke, 2006).
Participants and Recruitment

I used a purposive sampling strategy to recruit senior-level software and platform
engineers. To qualify, participants needed at least five years of professional experience and
had to be active users of Al tools for development work.

The final sample included 12 participants. My initial target was 12 to 18 people, but
the goal was always informational power, not just hitting a number. By the final interviews,
the core themes were repeating, suggesting we had approached thematic saturation, where
new interviews stop revealing significant new insights (Guest et al., [2006)). Because the
participants were all senior professionals, their feedback was incredibly rich and reflective,
providing dense, high-quality data. I do acknowledge that while the core themes felt
saturated, a larger sample might have uncovered more peripheral experiences.

Recruitment took place on professional networks like LinkedIn and in the DORA
community (Google Cloud, n.d.)) to ensure a diverse group. An initial call for participants
brought in 20 responses. This pool was narrowed down to the final 12 after screening for
experience and accommodating scheduling conflicts.

The final group was diverse. They used different Al tools, held various roles
(front-end, back-end, platform, architect), worked in companies ranging from startups to
large corporations, and came from different cultural backgrounds. This diversity was key to

capturing a rich range of perspectives. A full demographic overview is available in Table ?7.
Procedure and Materials

After receiving ethical approval, I sent an information sheet to all potential
participants. Those who agreed to join provided informed consent through a Google Form

and then scheduled an interview. The interviews were all conducted between May and



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 8

August 2025.

I collected the data using one-on-one, semi-structured interviews on Google Meet.
Each session lasted about 45 minutes and was recorded with the participant’s permission.
The interview guide (see ??) was designed to be both focused and flexible, with three main

parts:

1. Warm-up: I started with simple questions about the participant’s role and how they

used generative Al

2. Core Questions: The main part of the interview centered on open-ended questions
about productivity, agency (ownership, autonomy, and mastery), and the balance

between individual and team focus.

3. Wrap-up: I left time at the end for participants to share any final thoughts or

reflections.

This structure ensured all key topics were covered while still allowing me to explore
unexpected ideas that came up. After each interview, I held a brief debriefing session with
the participant and shared a debrief sheet.

Finally, I transcribed each interview recording verbatim. To ensure accuracy, I
listened to the audio multiple times, making sure to capture the full context of the

conversation, including significant pauses or other non-verbal cues.
Data Analysis

I analysed the interview data using inductive thematic analysis, following the
six-phase process outlined by Braun and Clarke, 2006: (1) data familiarisation, (2) initial
code generation, (3) searching for themes, (4) reviewing themes, (5) defining and naming
themes, and (6) producing the report. While the initial stages were purely inductive and
bottom-up to ground the analysis in the data, the full process involved a more nuanced,

two-stage strategy to achieve interpretive depth, as detailed below.



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 9

This entire process was guided by my critical realist perspective. The goal was to
move beyond the surface-level stories shared in the interviews to understand the deeper

psychological forces shaping how developers experience Al at work.

Analytic Strategy

I used a deliberate two-stage process to analyse the data, which ensured the findings

were both grounded in the interviews and informed by established theory.

The first stage was purely inductive, meaning I stayed as close to the participants’
own words as possible. After reading and re-reading all 12 transcripts, I went through them
line-by-line to generate over 300 descriptive codes. This process captured the explicit,
surface-level meaning of what developers said, grounding the entire analysis in their direct

accounts.

After establishing the descriptive codes, I did a second, top-down analysis to dig
deeper. Why was this necessary? A purely descriptive approach is not enough when dealing
with complex psychological concepts like agency and productivity. To truly understand the
data, I needed to connect the participants’ raw accounts with established psychological
theories. In this stage, I used theories like self-determination theory, effort justification, and
the automation paradox as a lens to interpret the descriptive codes. This allowed me to
move from what participants said to why they might have said it, uncovering the deeper

mechanisms shaping their experiences.

I recognise that this interpretive stage risks introducing researcher bias. I managed
this in two ways. First, I made sure every theoretical interpretation was directly tied to the
descriptive codes from stage one. Second, I engaged in a process of critical reflection to track

and question my analytical assumptions throughout the process.

This two-stage approach produced a final thematic map that is both built from the
ground up and sharpened by established theory, providing a robust foundation for my

findings.



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 10

Analytic Rigour and Trustworthiness

I built credibility (how believable the findings are) by spending a significant amount of
time immersed in the data and using the systematic two-stage analysis described previously.
To support transferability (how applicable the findings might be to other contexts), I provide
rich, detailed descriptions of the participants’ experiences in the discussion section. This
allows you, the reader, to judge for yourself how these insights might apply elsewhere.

For dependability and confirmability (how consistent and objective the process was),
I kept an audit trail that documents the steps of the analysis, from initial codes to the final
thematic map. Finally, as mentioned, I engaged in a process of critical reflection to critically
examine my assumptions and potential biases throughout the research. A full account of this

process is available in Appendix ?7?.
Ethics

This study received full ethical approval from the Northumbria University Research
Ethics Committee. Participation was entirely voluntary, and I obtained informed consent
from every participant before their interview. The consent form clearly explained the study’s
purpose, what participation involved, the right to withdraw at any time without penalty,
and how all data would be kept confidential. To protect anonymity, I removed all identifying
details from the interview transcripts and have used pseudonyms throughout this report.
The original recordings were stored securely and kept separate from the anonymised data.

I had a plan in place to manage any potential distress. If a participant had become
upset, I would have immediately paused the interview and offered them information for
support services, like their company’s Employee Assistance Programme (EAP) or relevant

mental health charities.
Results and Discussion

The analysis of interviews with 12 senior developers revealed three core themes that
address the central research questions: How is generative Al really changing their work,

specifically productivity, agency, and professional focus? Eleven of the developers had already



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 11

woven Al deep into their daily workflows, with at least two years of professional use under
their belts. The twelfth offered a crucial and valuable divergent counterpoint, a skeptical,
minimal-use perspective that helps sharpen the analysis. To maintain confidentiality, all
participants have been given pseudonyms (see Appendix ?? for a full overview).

A central concept emerged from our conversations: the developer’s role is being
redefined from coder to conductor. But even that metaphor is not perfect. It implies a
top-down control that does not quite capture the collaborative relationship developers
described. They did not see Al as a subordinate to command but as a cognitive partner. As
David put it, it’s a “non-judgemental senior advisor.”

This complex shift in professional identity boils down to three core themes:

1. The Re-Architecting of Developer Focus
2. The Shifting Definition of Productivity

3. The Double-Edged Tool of Agency

Everyone’s journey looks a bit different. While the themes were common, the
developers used Al in surprisingly diverse ways. We saw several archetypes emerge: the
Planner (Alex), using Al for high-level strategy; the Learner (Leo), using it to master new
skills; the Systems Thinker (Ben), who offloaded syntax to focus on architecture; and the
Force Multiplier (George), who used Al to single-handedly fill the roles of an entire team.
This shows the shift from coder to conductor is anything but a monolithic experience.

This is not just a story about technology changing a worker. Recent industry research
already frames Al as a powerful amplifier, not a silver bullet (DeBellis et al., [2025), and our
interviews hammered this point home. Charlie articulated this perfectly, framing the Al as a

mirror for its user’s own abilities:

I think it makes good developers a thousand times better. It makes poor
developers a thousand times poorer. Um, so I think it is a, you know, it’s a

mirror of its operator.



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 12

Charlie’s mirror analogy is the perfect lens for understanding our findings. The Al
does not dictate outcomes; it magnifies what the developer brings to the table—their skills,
their mindset, and their context. Each of the three themes that follow is filtered through this

powerful amplifier effect.



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al

Table 1

Thematic Framework Summary

Main Theme

Brief Definition

Core Analytical Ten-

sion

The Re-Architecting of

Developer Focus

The Shifting Definition

of Productivity

The Double-Edged Tool

of Agency

Characterises the shift in a devel-
oper’s cognitive focus, prompted
by Al, away from low-level im-
plementation and toward higher-
level strategic thinking and sys-

tems architecture.

Describes the evolution in how
developers perceive productivity,
moving from tangible metrics of
output to qualitative concepts of
outcome, such as value, impact,

and a sustainable state of flow.

Explores the dual impact of Al
on developer agency, wherein the
empowerment from new capabil-
ities is simultaneous with anxi-
eties stemming from potential de-

skilling and over-reliance.

The tension between a fo-
cus on Individual Output
and the need for System-

Level Impact.

The tension between mea-
sures of Raw Output (e.g.,
speed, volume) and the de-
sire for Meaningful Out-

come (e.g., value, quality).

The tension between the
Empowerment of new ca-
pabilities and the anxieties

of De-skilling and Risk.

13



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al

Central Organizing Concept

The Redefined Developer

Role: From Coder to Conductor

14

Y

Themes & Analytical Connections Drives a...

Theme 1: The Re-Architecting
of Developer Focus

(Tension: Individual Output

Y

vs. System-Level Impact) Which f
/hich forces a...

Y
Theme 2: The Shifting
Definition of Productivity

(Tension: Raw Output vs.

Meaningful Outcome) v

Creating a...

Y

Theme 3: The Double-
Edged Tool of Agency

(Tension: Empowerment

vs. De-skilling & Risk)

This lived experience

then reinforces the...

A

Figure 1
A Chritical-Narrative Model of the Thematic Cycle of Redefinition.

The Re-Architecting of Developer Focus

This theme is about a fundamental shift in what it means to be a developer, their

professional identity. Generative Al is pushing engineers to move their focus from tangible,

individual output (like writing lines of code) to more intangible, system-level thinking. For

most participants, Al acted as a catalyst, accelerating their shift from line-by-line coding

towards higher-level architectural thinking.

This transition, however, is not universal. The experience of Harry, a deep specialist




DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 15

in a niche, high-stakes field, provides a crucial counterpoint. He fundamentally did not trust
the AI’s output in his domain, which prevented him from deeply integrating it into his work.
His scepticism was born from repeatedly receiving factually incorrect answers in his area of

expertise, leading to a blunt conclusion:

every time I ask Al a topic or a little bit trickier more like difficult question

about a topic I'm really well versed in. It’s complete bullshit.

Harry’s experience is more than just an exception, it reveals the absolute prerequisite
for the coder to conductor shift: trust. Without a baseline faith in the tool’s accuracy,
developers will not use it for anything other than trivial tasks.

For the eleven developers who did cross that threshold, Al triggered a major cognitive
shift. They consistently described this change in two ways: first, as an elevation to more
strategic, systems-level thinking, and second, as the adoption of the Al as a collaborative,

cognitive partner.
Elevation to Strategic, Systems-Level Thinking

Offloading the cognitive burden of syntax to Al frees developers to concentrate on
system architecture and strategy, a shift that is reshaping their professional identity. Ben, for
example, now sees himself as “much more of a systems level thinker” because the act of
coding, once a specialised craft, now “seems like... anyone could do this.” His comment gets
to a core finding: implementation is becoming a commodity.

The developer’s value is shifting from the tangible act of writing code to the
intangible act of ensuring a system’s architectural integrity. While Al can generate the bricks
(code), the developer must be the architect who designs the blueprint and guarantees the
entire structure is sound. This cognitive reallocation was vividly captured by Charlie, who
described the automation of “grunt work” as a “forcing function” that pushed him to become
a better architect. To effectively direct the Al he realised he needed to deepen his own
knowledge, concluding, “the more I knew about what I was trying to instruct the models to

do, the more effective I can become.”



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 16

This new focus on high-level thinking led participants to flatly reject simplistic,
quantitative views of productivity. Alex dismissed the idea of writing “code by the kilogram,”
stating, “I'm a lot more interested in if a tool could help me plan or understand a document.”
David articulated the same principle, defining productivity not by volume but by its value to

others:

Um making impact would be would be being productive. So not the amount of
lines written or anything, but actually building something of like substance that

that someone else could readily consume or use or help someone with.

Together, these statements signal a move away from a factory-floor model of software
development towards an ethic focused on intellectual engagement and human-centric value.

A key part of this architectural role is better planning, and Al acts as a forcing
function for it. To delegate a task to an Al, a developer must first clarify the desired

outcome. As Charlie noted, the process forces a more thoughtful approach:

it actually forces me to think through what I want... I actually was very
thoughtful about how I wrote down what the prompt was that I wanted it to

create.

This highlights a powerful side effect: Al forces metacognition. The need to craft an
effective prompt compels a developer to engage in metacognition, or thinking about thinking,
the higher-order processes used to monitor and regulate one’s own problem-solving (Flavell,
1979). The Al becomes a partner in a metacognitive loop, prompting the developer to
translate a vague idea into a clear, explicit set of requirements.

By offloading the mental details of implementation, developers are not simply
working faster; they are working at a higher level of abstraction. This transition, from a
craftsperson focused on code to an architect focused on a system’s design, is a redefinition of

the developer’s role. However, this cognitive offloading is a strategic trade-off that introduces



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 17

clear risks, creating a direct link to the anxieties around de-skilling that will be explored in
the next theme.

AI as Mentor, Collaborator, and Cognitive Partner

Beyond being a simple tool, Al was consistently framed by participants as a cognitive
partner that plays two distinct roles. At times, it acts as a “non-judgemental mentor” for
top-down guidance. At other times, it is a peer-level collaborator and “rubber duck”, a term
for verbalising a problem to an inanimate object to find a solution (Hunt & Thomas, [1999).

This “non-judgemental” quality is one of the AI’s most powerful psychological
features. It creates a profound sense of psychological safety which is the belief that an
environment is safe for interpersonal risk-taking (Edmondson, [1999)). This private space for
learning, free from social judgement, removes the fear of embarrassment that can inhibit
creativity and experimentation. David captured this perfectly, framing the Al as a trusted

confidant:

I use it as a non-judgemental, um, you know, senior advisor, I think. That’s how
I see it. ...you don’t want to be the guy that’s constantly tapping someone on the
shoulder going, "how can you just show me how to do this?”’... You can, you know,
question it as much as you want. It’s not going to get angry or annoyed with you,

you know?

This psychological safety encourages developers to ask the “stupid questions” they
might hesitate to voice to human colleagues. Charlie, for instance, explained he is
comfortable asking the Al basic questions about testing that he would never ask a person for
fear they would “think I’'m stupid.” The AI partner, he concluded, creates a space where “I
can ask it anything that I would have been afraid to ask another human.”

This private interaction also has a clear strategic purpose: acting as a partner for
rehearsal before social engagement. This behaviour ranges from a quick tactical check to a
deep refinement of an argument. At the tactical level, Frank uses the Al to gauge his

position’s viability before a team debate:



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 18

...get a sense for how much should I... fight for my position... if the AT is like,
'Oh, that’s a good idea,” then I'll fight for it more, but if the Al is like, "That’s a
terrible idea,” then I'll like back off...

This rehearsal can evolve into a more sophisticated workflow. Jeff uses the Al not
just for answers but as a sparring partner to “critique” his own knowledge and “give me
feedback.” This process transforms the Al from an information-retrieval tool into a key part
of his metacognitive loop, allowing him to strengthen his arguments, anticipate
counter-arguments, and enter discussions with a more robust position.

This dynamic also acts as a powerful “equaliser” in team settings, where an idea’s
influence can be tied to the assertiveness of the person proposing it. The Al shifts the basis

of influence from persuasive rhetoric to demonstrable results. As George explained:

sometimes it’s the most introverted and quiet people that have the best ideas... if
you can create something that actually works and show it to people, then that

speaks, that speaks much louder than you can.

The ability to privately validate an idea or build a prototype provides a new, more
meritocratic medium for communication. The working prototype becomes the argument,
allowing the most compelling demonstration, rather than the loudest voice, to drive technical
direction.

The sophistication of this human-Al partnership is clear in the way developers

differentiate their use of tools. Ben described his workflow:

if I wanna like get an understanding of a thing or like challenge an idea... I'll do
Command Shift T for the chat pane... if I want it to just like kind of fix

something up... I'll just do like Command I for the inline.

This is a clear example of distributed cognition (Grinschgl & Neubauer, 2022; Hollan
et al., [2000) in action. The developer and Al tools form a single, hybrid problem-solving

system where cognitive tasks are strategically divided: the conversational chat pane is a



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 19

partner for high-level ideation, while the inline assistant is a subordinate for mechanical
tasks.

AT’s role, therefore, extends beyond that of a simple tool, functioning instead as a key
component in a distributed cognitive system that both enhances problem-solving and fosters
the psychological safety required for more inclusive and creative collaboration.

This re-architecting of focus represents a fundamental shift. By offloading low-level
implementation and fostering a collaborative partnership, Al elevates the developer’s role
from a craftsperson of code to an architect of systems. This is not just a change in workflow;
it is a redefinition of the developer’s core value. The main implication is that career
progression may need to shift away from pure coding skill toward architectural and strategic
capabilities. But if a developer’s value is no longer in the tangible code they produce, how
should their productivity be measured? This foundational change directly leads to the

question of productivity, explored in the following theme.
The Shifting Definition of Productivity

This theme addresses how developers are rethinking productivity in the age of AI. A
critical tension emerges between traditional measures of output (speed and volume) and
emerging definitions of outcome (impact and value).While most participants are shifting
towards valuing outcomes, this transition is not seamless. For some, like the sceptical user
Harry, productivity remains tied to implementation speed. For others, the promise of
Al-driven efficiency was often undermined when the tool itself hindered progress. This
theme, therefore, explores both the aspirational redefinition of productivity and the
pragmatic challenges of achieving it.

Recent, large-scale industry research supports this shift from volume to value. The
2025 DORA report on Al-assisted software development uncovered a critical paradox:
developers who heavily use generative Al report higher job satisfaction and less burnout,
even while spending less time on the work they deem valuable (Storer, |2025). The resolution

to this paradox is simple: the very definition of valuable work is in flux. The DORA research



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 20

suggests developers are renegotiating their contributions, moving from hands-on
implementation towards a more holistic view of value that encompasses utilitarian,
reputational, and intrinsic factors. The report’s findings provide compelling quantitative
support for the qualitative shift observed in this study, where productivity is being redefined

not by the volume of code, but by the strategic impact of the work delivered.
From Volume to Value and Impact

The most significant shift in how participants view productivity is the move away
from valuing code volume toward valuing the tangible impact of their work. This
re-prioritisation reflects a deeper understanding of a developer’s role, where the ultimate
measure of success is not output quantity, but its quality, efficiency, and usefulness to others.

One participant, for example, explicitly rejected traditional metrics, instead framing

productivity as the “total cost of build.” As Alex stated:

For me, it’s... a total cost of build. How long does it take me to build a proper,

uh, quality, uh, product?

Alex’s metaphor of a “total cost of build” reframes productivity from a short-term
measure of output to a holistic, long-term process of value creation. The concept of cost
extends beyond the immediate effort of writing code; it incorporates the future expenses of
maintenance, debugging, and user friction—all aspects of technical debt. By focusing on
building a “proper, quality, product,” Alex aligns himself with a craftsman ethic, where pride
is derived not from production speed but from the final artefact’s durability and integrity.
This perspective defines a productive developer not as someone who writes code quickly, but
as someone who thoughtfully architects a sustainable and valuable solution.

This focus on impact also reveals a social and collaborative dimension to productivity,
where value is defined by how useful the work is to others. David, for instance, defined being
productive not by the “amount of lines written”, but by “building something of like

substance that that someone else could readily consume or use or help someone with.”



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 21

David’s contrast between “lines written” and building something of “substance” that
can “help someone with” exemplifies Organisational Citizenship Behaviour (OCB), defined as
discretionary behaviour that promotes organisational effectiveness (Organ, |1988). He draws a
clear line between quantifiable output, his formal job duties, and the discretionary, altruistic
acts that are a core dimension of OCB (Fan et al., 2023; Felix & Eboka, 2024)). His goal is
not merely to complete a task but to improve the team’s social and psychological context by
creating something his colleagues can “readily consume,” which reflects a more evolved view
of OCB (Felix & Eboka, [2024)). This focus on his voluntary, positive impact on the people

around him, rather than simply fulfilling his role’s requirements, is the very heart of OCB.
From Raw Speed to Sustainable Flow

While Al is often marketed as a tool for raw speed, participants described a more
nuanced ambition: achieving a sustainable state of flow. Their goal was not simply to
accelerate tasks but to use Al to eliminate the cognitive friction that disrupts momentum.
Leo described this unproductive friction as “spinning my wheels, searching through Stack
Overflow and documentation sites,” an experience that “doesn’t feel productive.”
Participants therefore saw the reduction of such tasks as a direct enhancement of
productivity, reframing the primary benefit of Al from mere acceleration to the preservation
of focus.

This reframes Al as a tool for managing cognitive resources, not just increasing
output. Participants aimed to reach a “good enough” state more quickly, conserving mental
energy for complex challenges. The impact was transformative for some, like Frank, who
described the change not as an incremental improvement but as a subjective shift of an
“order of magnitude.” This metaphor signals a qualitative change in the nature of his work;
the AI has not just made him faster but has fundamentally altered his experience of what is
possible.

As George put it:

I think it’s getting something that’s good enough out the door as quickly as you



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 22

can so you can move on to the next thing, right? Um, and I think, I think Al

accelerates that.

This pragmatic approach, prioritising momentum over perfection, aligns with
cognitive load theory (Sweller, 2024; Sweller et al., 2019) and the importance of flow
states (Nakamura & Csikszentmihalyi, [2014)). Getting something “good enough” out the
door aligns directly with achieving a flow state, where a key component is the seamless
progression between tasks. The Al enables this by rapidly generating a baseline solution, as

Leo explained:

it’s getting it to the point where it works is the piece that I get accelerated and
then I have that, it doesn’t change the fact that I still have this whole other

phase of work I do on it afterwards.

By accelerating the journey to a workable first draft, the AI helps conserve a
developer’s finite cognitive resources.This allows them to bypass the initial, often paralysing,
stages of a task and immediately engage with tangible work, facilitating a more sustainable
and productive state of flow.

However, this Al-assisted speed also creates new pressures. As one participant noted,
their personal baseline for a productive day has shifted upwards, recalibrating expectations

in a way that affects well-being. Frank stated:

my baseline for productivity has definitely changed... that’s now the new baseline

of like low productivity.

This reveals a potential productivity paradox (Brynjolfsson, 1993; Brynjolfsson et al.,
2020)), where tools designed for efficiency also raise expectations. Frank’s phrase, “new
baseline of like low productivity,” shows that his internal benchmark for performance has
been permanently raised; what was once a standard day’s work now feels insufficient. This is
the double-edged sword of Al-driven efficiency: the same tool that removes friction can

create a new anxiety, a feeling of perpetually falling short of a new, machine-augmented



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 23

standard. This recalibration of expectations has significant implications for developer
well-being, as the gap between a normal and an Al-assisted day can become a major source

of stress and a potential pathway to burnout.
The Contested Evidence on AI-Driven Speed

While the participants experienced a profound shift in their sense of speed and flow,
these qualitative findings must be placed within the contested landscape of quantitative
research. The narrative of Al-driven productivity is not straightforward. This complexity is
reflected in the DORA annual reports; the 2024 edition found Al adoption correlated with a
decrease in throughput, a finding reversed in the 2025 report, which showed a positive
relationship (DeBellis et al., 2024, [2025). Furthermore, a landmark study by Brynjolfsson
et al. (2025)), often cited for its 14% productivity boost, did not study developers but rather
customer support agents. The gains were almost entirely among novice workers, with
minimal impact on experienced staff.

This nuance is critical, as this study’s sample consists exclusively of senior developers.
The domain-specific literature here presents an even more contradictory picture. A
randomised controlled trial by Becker et al. (2025), involving experienced developers on
complex codebases, found that access to modern Al tools actually increased task completion
time by 19%.

The experiences of David helps explain this friction in the quantitative data.
Leveraging Al in a high-stakes context introduces new cognitive overhead. As David, a
platform engineer, learned, blindly trusting an AI’s confident output can lead to significant

reputational damage:

I typed into ChatGPT, I got an answer, which was very confidently stated... 1
went into the AWS console... and that feature did not exist and I would have

ended up, you know, very embarrassed.

This experience forced David to develop a rigorous, time-consuming verification

workflow. This suggests a potential explanation for the findings of Becker et al. (2025): for



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 24

experienced developers, the time saved by Al may be offset by the time required to critically
evaluate and safely integrate its output. The perceived order of magnitude speed increase
may be potent in the initial, generative phases of a task, but this benefit is likely offset by
the cognitive costs of verification and risk mitigation.

Ultimately, this theme documents a fundamental shift in how developers conceptualise
productivity. Al integration is pushing them to abandon crude metrics of volume in favour
of more meaningful, outcome-driven concepts of value, impact, and sustainable flow. This is
not a simple transition but a complex negotiation fraught with new pressures and paradoxes.
The clear implication for management is that traditional productivity metrics, such as lines
of code or story points, are becoming obsolete and may even incentivise the wrong
behaviours. This profound re-evaluation of a developer’s contribution raises a critical
question that leads to the next theme: If the very definition of their work is changing, what

is the impact on their sense of agency, control, and professional self-worth?
The Double-Edged Tool of Agency

This theme examines the contradictory effects of Al on developer agency, exploring
the central tension between profound empowerment and significant anxieties about
de-skilling and risk. The double-edged nature of this relationship emerged clearly from the
participants’ accounts. For George, Al was a force multiplier that enabled him to

single-handedly accomplish a project that would have otherwise required a full team:

I ended up building it on my own by using Al to fill in the gaps. So it was my

business analyst, it was my developer.

Yet, for others, this empowerment came at a direct cost to their fundamental skills.

As Ben explained, his reliance on Al has eroded his basic knowledge:

I've actually started forgetting syntax for for languages that I know... I kind of

forgotten how to do um, even like kind of basic things like a for loop.



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 25

This theme, therefore, focuses on how developers navigate the competing

psychological forces of empowerment and erosion to maintain their sense of control.
Empowerment and Skill Enhancement

A consistent narrative among participants was the profound empowerment they felt
when using Al as a learning and development partner. This was particularly transformative,
as the interactive, non-linear nature of Al-driven exploration offered a powerful alternative
to traditional learning models. One participant, for instance, described how Al helped them
to “re-restructure” their own learning, putting them back in control of a process that had

been a source of difficulty.

so I have ADHD... T did terrible in school... through these tools, um they have
helped me to kind of re-restructure like my own learning. Um so it’s put the

control back into my own hands. (Ben)

This experience connects directly to Self-Determination Theory, which holds that
autonomy,the feeling of control over one’s actions is a fundamental psychological need for
well-being and motivation (Deci & Ryan, 2000). Ben’s description of his past struggles
suggests an educational history that failed to support this need. The Al, in contrast,
becomes a tool for reclaiming this control. His phrase “put the control back into my own
hands” directly articulates this restored sense of autonomy. By allowing him to
“re-restructure” his learning to fit his cognitive style, the Al creates an environment that
satisfies this core psychological need and fosters a renewed sense of empowerment.

This empowerment also extended to increased confidence in tackling new challenges.
Another participant, new to the Python language, initially felt like a fraud but found that

using Al as a constant dialogic partner accelerated their learning.

I suppose when I first started using it on the Python stuff, I felt a little bit
fraudulent... I also fire up, uh, Claude so that I can constantly ask questions.

(Leo)



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 26

Vygotsky’s theory of the Zone of Proximal Development (ZPD) and scaffolding helps
explain this experience (Al-Hamadi & Yousif, 2025). The ZPD is the gap between what a
learner can do alone and what they can achieve with guidance. Leo’s feeling of being
“fraudulent” suggests he was operating in this zone. The Al acts as a more knowledgeable
other, providing the scaffolding to bridge the gap. By having an on-demand partner to
“constantly ask questions,” he could safely navigate the ZPD, building both confidence and
competence. This just-in-time, dialogic support is the hallmark of effective scaffolding,

enabling the learner to internalise new knowledge and grow.
Risk, De-skilling and Skill Atrophy

A pervasive anxiety about skill atrophy counterbalanced this sense of empowerment.
This concern reflects the risk of accumulating cognitive debt, where the short-term cognitive
ease from a tool comes at the long-term cost of deep, effortful thinking and skill
retention (Stadler et al., 2024). This tension was a central theme in participants’ experiences,
and recent empirical research strongly supports it. Studies have found that while
self-confidence is associated with more critical thinking in Al-assisted tasks, confidence in the
GenAl tool itself is associated with less critical thinking (Lee et al., 2025)). These anxieties
also mirror findings that using an LLM is correlated with impaired memory of the produced
text and a lower sense of ownership (Kosmyna et al., 2025).

This phenomenon was clear in the account from Ben, who admitted to forgetting

basic syntax because the Al always generated it for them:

I've actually started forgetting syntax for for languages that I know... I kind of

forgotten how to do um, even like kind of basic things like a for loop.

This experience exemplifies the cognitive principle of use it or lose it, where
procedural knowledge becomes less accessible if not regularly retrieved (Faust et al., |[2021).
Offloading procedural knowledge, like the syntax for a “for loop,” means a developer no

longer exercises the cognitive pathways for retrieving it. This creates a tension between a



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 27

short-term productivity gain and long-term skill atrophy. The immediate benefit is a
reduction in cognitive load, but the potential cost is an erosion of fundamental skills,
creating a dependency that could leave a developer vulnerable. The developer, therefore,
engages in a constant, implicit cost-benefit analysis between offloading and de-skilling.

This anxiety extends beyond syntax to a developer’s core sense of value, manifesting
as what some in public discourse are calling Al Impostor Syndrome (Nosta, 2025). Ivan
described a profound dissatisfaction after completing a complex task with a single
instruction to an Al asking, “what had I added as a value.” This mirrors Leo’s experience of

feeling “a little bit fraudulent” when first using Al in an unfamiliar language.

I developed a no-code agent. I was not happy, honestly, because I wrote one line
of instruction and it worked. And I thought, what had I added as a value, right?

Uh, so it made me feel low. (Ivan)

This dissatisfaction is a direct expression of cognitive debt. The outcome was
achieved without the mental effort that, according to theories of intrinsic motivation, is
essential for developing a sense of competence and mastery (Deci & Ryan, [2000)). The Al, in
effect, paid the cognitive price, leaving the developer with the result but not the feeling of
accomplishment. This aligns with the psychological principle of Effort Justification, which
holds that people value outcomes more when they have put more effort into achieving
them (Festinger, 1957). Recent research adds a crucial nuance, demonstrating this effect
occurs primarily when individuals have a high degree of perceived control over the
outcome (Harmon-Jones et al., 2024)). Ivan’s question, “what had I added as a value,”
reveals a crisis of contribution where he felt responsible for the outcome (high control) but
exerted no meaningful effort. This highlights a paradox: while Al can dramatically reduce
effort, this very reduction can strip an activity of its intrinsic value, undermining a
developer’s sense of competence.

A perceived learning paradox further compounded this anxiety. Grace described

being caught between accelerated learning and an ever-expanding knowledge gap.



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 28

it both accelerates my, um, growth in learning but also, like, accelerates the huge
gap in my knowledge... I feel like the gap of things that I feel like I need to know

now is getting wider and wider um because of because of Al

This paradox of accelerated learning leading to a heightened sense of inadequacy
exemplifies cognitive overload (Lahlou, 2025; Sweller, [2011)). By making vast amounts of
information instantly accessible, the Al simultaneously accelerates learning while revealing
the sheer scale of what remains unknown. The result is a feeling of being perpetually behind.
The “huge gap in my knowledge” is not a static deficit but a dynamic, expanding chasm.
This suggests Al’s broader psychological impact may be to create a new form of intellectual
anxiety: a constant awareness of the vast, expanding universe of information just beyond
one’s grasp.

Some participants, however, contextualised this growing knowledge gap as a natural
consequence of a new, higher level of abstraction in engineering. Ben, for instance, framed

this evolution not as a simple loss of skill but as the next logical step in programming history:

I'm kind of seeing it as like yet another higher level higher level programming
language abstraction like we keep stepping up in languages over time all the way
from, you know, COBOL and all that. So it’s seems like that, maybe the next

iteration of that kind of thing.

Ben’s metaphor provides a technical grounding for the anxiety Grace describes. By
framing Al as another layer of abstraction, he suggests the skills being "lost" are becoming
the new fundamentals, just as modern developers no longer need to manage memory
manually. While this signals progress, it also explains the anxiety: the very definition of
foundational knowledge is shifting, widening the gap between what one knows and what one
feels they need to know.

This anxiety was not universal. Charlie offered a compelling counter-narrative,

arguing that AI amplifies the need for critical thinking rather than diminishing it.



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 29

I think that’s probably the opposite of what a lot of people will tell you is that
they’re worried about it removing critical thinking... I actually am taking the
perspective that I I want to know what I'm asking it to do more innately than I

did before.

Charlie’s perspective reframes the Al-developer relationship as one that demands a
higher level of human expertise. Where others see a tool that replaces knowledge, Charlie
sees one that demands deeper, more intuitive mastery. To effectively command an Al on
complex tasks, a superficial understanding is insufficient; one must know the subject matter
more innately. This metacognitive stance is not just about knowing facts but about
understanding underlying principles so thoroughly that one can critically evaluate, guide,
and correct the AI's output. In this model, the Al elevates the developer into the role of a
critical director, whose value lies not in rote knowledge but in the deep expertise required to
wield the tool effectively.

The adoption of generative Al, then, creates a profound psychological tension. A
developer’s agency is not a simple story of enhancement or erosion but a continuous
negotiation between the tool’s empowering possibilities and the risks of de-skilling and
dependency. This double-edged experience is the core psychological reality of the shift from
coder to conductor. The critical implication for training is the need to cultivate
metacognitive skills; critical evaluation, prompt engineering, strategic delegation, to ensure
Al serves as an amplifier, not a crutch. To conduct an orchestra of Al agents is to wield
immense power, but it is also to bear the responsibility of critical oversight and the anxiety
that one’s own skills may be fading into the background.

The relationship between AI and developer agency creates a significant theoretical
conflict within the framework of Self-Determination Theory. While Al clearly supports the
psychological need for autonomy by giving developers greater control over their learning and
problem-solving, it simultaneously threatens their need for competence. This threat

manifests through anxieties about skill atrophy and the hollow feeling of accomplishment



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 30

that comes from effortless achievement. This tension suggests a potential hierarchy of needs
in this context, where the immediate satisfaction of autonomy may be prioritised over the

longer-term, and perhaps more fundamental, need for competence. The unresolved nature of
this conflict has profound implications for long-term well-being; if the daily use of a primary
work tool consistently undermines a core psychological need, it could foster a sustained sense
of professional inadequacy, potentially leading to burnout even as surface-level productivity

appears to increase.
Conclusion

The integration of Al into senior software and platform engineering developers is
shaped by a core psychological tension: Al acts as a double-edged tool for developer agency.
This central conflict—the balance between empowerment and the anxiety of de-skilling,
drives a fundamental redefinition of the developer’s role. This tension directly reshapes the
other core themes. The re-architecting of developer focus is a behavioural adaptation, as
developers offload commoditised skills to elevate their cognitive work to the safer ground of
high-level strategy. In turn, this shift necessitates a shifting definition of productivity, a
psychological re-evaluation where professional value is deliberately relocated from
automatable outputs to uniquely human outcomes.

This study contributes to the psychological literature on knowledge work in several
ways. The empowerment described by participants validates Self-Determination Theory,
showing Al can satisfy the need for autonomy. However, the dissatisfaction with easy
achievements lends weight to the theory of Effort Justification, suggesting that for experts,
cognitive struggle is vital for job satisfaction. This creates a potential theoretical tension,
where the autonomy-supportive nature of AI may paradoxically undermine the need for
competence by conflicting with the principle of effort justification. Finally, the study extends
Cognitive Load Theory, illustrating how developers use Al to offload extraneous load, while
also highlighting the cognitive costs of verification and trust calibration.

While much of the initial industry hype focused on productivity gains from



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 31

generating more code, a more nuanced reality has emerged. These findings align with recent
industry-level research, which shows that significant value is found not by automating the
fraction of a developer’s time spent coding, but in augmenting the majority of their time
spent on complex, collaborative tasks like architectural discussions, code reviews, and
planning (DeBellis et al., |[2025). This represents an evolution in Al adoption, moving beyond
an initial J-curve of learning towards mature usage patterns that support the holistic
practice of software engineering. This implies that training and management should shift
focus from maximising coding output to cultivating the critical metacognitive skills required
to effectively direct and validate Al-generated work. This trend is likely to continue as both

AT capabilities and developers’ skills in wielding them improve.

The primary strength of this study is its rich, qualitative exploration of the lived
experiences of senior, professional users. However, the small, purposive sample means the
findings are transferable, not generalisable. This study also represents a snapshot in time;
the experiences captured here will undoubtedly shift as Al capabilities, particularly in the

agentic space, become more advanced.

Several crucial avenues for future research emerge from these findings. A longitudinal
study is essential to track how developers’ skills and identities evolve as Al technology
matures. The potent but subjective anxieties around skill atrophy require a large-scale
quantitative study to test the correlations between Al usage and validated scales for skill
decay, job satisfaction, and burnout. As AI becomes more autonomous, research must
investigate its impact on team-level dynamics, such as the development of shared mental
models. Finally, while this study focused on senior engineers, future work must investigate
the novice-expert divide to understand how these tools affect skill acquisition for junior

developers.

These findings also point to a deeper, more philosophical challenge. The shift towards
developers using natural language to direct Al runs headfirst into a critical, unresolved

tension. Some software engineering experts argue that the very nature of programming



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 32

languages is their hard-won precision, a quality fundamentally at odds with the inherent
ambiguity of human language. Programming languages are designed to be simple and
unambiguous; natural languages are anything but. What does it mean for the future of the
craft if the primary interface for creating rigorously precise instructions is, by its very nature,
imprecise? This suggests a critical challenge: how can the industry reconcile the expressive
power of natural language with the absolute need for deterministic, reliable code? It is a
question that this research brings into sharp focus, but one the field has yet to answer.

The story of the developer in the age of Al reveals a clear truth: software
development is not dying, it is changing. The transition is not one of simple replacement but
a profound, often challenging, renegotiation of professional identity. These tools are not just
making the old work faster; they are forcing the creation of new work, demanding a shift
from the tangible craft of writing code to the intangible art of conducting systems.
Successfully navigating this transition requires more than just technical skill. It demands
metacognitive awareness, a comfort with ambiguity, and a renewed focus on the uniquely
human capacity for strategic thought. Ultimately, the future of software engineering will be
defined not by the power of the Al, but by the wisdom developers use to wield it.

In reflecting on the central metaphors used in this analysis, it becomes clear that
while the shift from coder to conductor metaphor captures the developer’s strategic focus, it
is the cognitive partner metaphor more accurately reflects their lived experience. The former
implies a hierarchy, but the latter speaks to the nuanced, collaborative, and peer-like
relationship that defines the day-to-day reality of Al-augmented development. This
partnership, however, extends beyond the individual. The findings of this thesis suggest that
generative Al acts as both a mirror and a multiplier for an organisation’s existing culture.
The critical question for leadership, therefore, is not whether AI, but whether the
organisation is ready for what the tool will reveal and reflect. Success is not rooted in the
technology itself, but in the individual and team capabilities that the AI will inevitably

amplify, for better or for worse.



DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 33

References

Al-Hamadi, D., & Yousif, J. H. (2025). Artificial intelligence revolution for enhancing
modern education using zone of proximal development approach. Applied Computing
Journal. https://api.semanticscholar.org/CorpusID:277479920

Becker, J., Rush, N., Barnes, E., & Rein, D. (2025). Measuring the impact of early-2025 ai
on experienced open-source developer productivity. https://arxiv.org/abs/2507.09089

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research
in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp0630a

Brynjolfsson, E. (1993). The productivity paradox of information technology. Commun.
ACM, 36, 66-77. https://api.semanticscholar.org/CorpusID:15074120

Brynjolfsson, E., Li, D., & Raymond, L. (2025). Generative Al at Work. The Quarterly
Journal of Economics, 140(2), 889-942. https://doi.org/10.1093/qje/qjae044

Brynjolfsson, E., Rock, D., & Syverson, C. (2020, February). Unpacking the ai-productivity
paradox. In How ai is transforming the organization. The MIT Press.
https://doi.org/10.7551 /mitpress/12588.003.0014

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and
mized methods approaches (5th). Sage publications.

Daniloaia, D., & Turturean, E. (2024). Knowledge Workers and the Rise of Artificial
Intelligence: Navigating New Challenges. SEA: Practical Application of Science,
12(35), 111-121. [https://doi.org/10.70147 /35111121

DeBellis, D., Storer, K., Harvey, N., Beane, M., Edwards, R., Fraser, E., Good, B.,
Kalliamvakou, E., Kim, G., Maxwell, E., D’Angelo, S., Inman, S., Murillo, A., &
Villalba, D. (2025, September). Dora 2025 state of ai-assisted software development
report (tech. rep.). Google. https://cloud.google.com /resources/content /2025-dora-ai-
assisted-software-development-report?e=48754805

DeBellis, D., Storer, K. M., Lewis, A., Good, B., Villalba, D., Maxwell, E., Castillo, K.,

Irvine, M., & Harvey, N. (2024). 2024 accelerate state of devops (tech. rep.). Google


https://api.semanticscholar.org/CorpusID:277479920
https://arxiv.org/abs/2507.09089
https://doi.org/10.1191/1478088706qp063oa
https://api.semanticscholar.org/CorpusID:15074120
https://doi.org/10.1093/qje/qjae044
https://doi.org/10.7551/mitpress/12588.003.0014
https://doi.org/10.70147/s35111121
https://cloud.google.com/resources/content/2025-dora-ai-assisted-software-development-report?e=48754805
https://cloud.google.com/resources/content/2025-dora-ai-assisted-software-development-report?e=48754805

DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 34

LLC. https://dora.dev/research /2024 /dora-report /2024-dora-accelerate-state-of-
devops-report.pdf

Debellis, D., Storer, K. M., Villalba, D., Harvey, N., D’Angelo, S., & Brown, A. (2025).
DORA: Impact of Generative Al in Software Development.

Deci, E. L., & Ryan, R. M. (2000). The" what" and" why" of goal pursuits: Human needs and
the self-determination of behavior. Psychological inquiry, 11(4), 227-268.

Edmondson, A. (1999). Psychological safety and learning behavior in work teams.
Administrative Science Quarterly, 44(2), 350-383. https://doi.org/10.2307 /2666999

Fan, Q., Wider, W., & Chan, C. K. (2023). The brief introduction to organizational
citizenship behaviors and counterproductive work behaviors: A literature review.
Frontiers in Psychology, 1/. https://api.semanticscholar.org/CorpusID:261849188

Faust, T. E., Gunner, G., & Schafer, D. P. (2021). Mechanisms governing activity-dependent
synaptic pruning in the developing mammalian cns. Nature Reviews Neuroscience,
22(11), 657-673.

Felix, O., & Eboka, I. Z. (2024). Citizenship behaviour and organizational performance: A
review of extant literature. International Journal of Management & Entrepreneurship
Research. https://api.semanticscholar.org/CorpusID:266850683

Festinger, L. (1957). A theory of cognitive dissonance. redwood city: Stanford university
press. Organization Science, 23(4), 1077-1099.

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of
cognitive-developmental inquiry. American Psychologist, 34(10), 906-911.
https://doi.org/10.1037/0003-066X.34.10.906

Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate: The science of lean software and
devops: Building and scaling high performing technology organizations. I'T Revolution

Press.


https://dora.dev/research/2024/dora-report/2024-dora-accelerate-state-of-devops-report.pdf
https://dora.dev/research/2024/dora-report/2024-dora-accelerate-state-of-devops-report.pdf
https://doi.org/10.2307/2666999
https://api.semanticscholar.org/CorpusID:261849188
https://api.semanticscholar.org/CorpusID:266850683
https://doi.org/10.1037/0003-066X.34.10.906

DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 35

Forsgren, N., Storey, M.-A., Maddila, C., Zimmermann, T., Houck, B., & Butler, J. (2021).
The SPACE of Developer Productivity: There’s more to it than you think. ACM
Queue, 19(1), 20-48. https://doi.org/10.1145 /3454122.3454124

Fowler, M. (2003). Who Needs an Architect? IEEE Software, 20(5), 11-13.
https://doi.org/10.1109/MS.2003.1231144

Google Cloud. (n.d.). Dora community of practice [Accessed: 2025-08-19].

Gormez, M. K., Yilmaz, M., & Clarke, P. M. (2024). Large language models for software
engineering: A systematic mapping study. In M. Yilmaz, P. Clarke, A. Riel,

R. Messnarz, C. Greiner, & T. Peisl (Eds.), Systems, software and services process
improvement (pp. 64-79). Springer Nature Switzerland.

Graziotin, D., Wang, X., & Abrahamsson, P. (2015). Do feelings matter? On the correlation
of affects and the self-assessed productivity in software engineering. Journal of
Software: Evolution and Process, 27, 467-487. https://doi.org/10.1002/smr.1673

Grinschgl, S., & Neubauer, A. C. (2022). Supporting cognition with modern technology:
Distributed cognition today and in an ai-enhanced future. Frontiers in Artificial
Intelligence, 5. https://api.semanticscholar.org/CorpusID:250497580

Guest, G., Bunce, A., & Johnson, L. (2006). How Many Interviews Are Enough? Field
Methods, 18(1), 59-82. https://doi.org/10.1177/1525822X05279903

Harmon-Jones, E., Matis, S., Angus, D. J., & Harmon-Jones, C. (2024). Does effort increase
or decrease reward valuation? considerations from cognitive dissonance theory.
Psychophysiology, e14536. https://api.semanticscholar.org/CorpusID:267522374

Hollan, J., Hutchins, E. L., & Kirsh, D. (2000). Distributed cognition. ACM Transactions on
Computer-Human Interaction (TOCHI), 7, 174-196.
https://api.semanticscholar.org/CorpusID:1490533

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J., &

Wang, H. (2024). Large language models for software engineering: A systematic


https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1109/MS.2003.1231144
https://doi.org/10.1002/smr.1673
https://api.semanticscholar.org/CorpusID:250497580
https://doi.org/10.1177/1525822X05279903
https://api.semanticscholar.org/CorpusID:267522374
https://api.semanticscholar.org/CorpusID:1490533

DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 36

literature review. ACM Transactions on Software Engineering and Methodology,
33(8). https://doi.org/10.1145/3695988

Hunt, A., & Thomas, D. (1999). The pragmatic programmer: From journeyman to master.
Addison-Wesley Professional.

Jaspan, C., & Green, C. (2023). Defining, Measuring, and Managing Technical Debt. IEEE
Software, 40(3), 15-19. https://doi.org/10.1109/ms.2023.3242137

Kosmyna, N., Hauptmann, E., Yuan, Y. T., Situ, J., Liao, X.-H., Beresnitzky, A. V.,
Braunstein, 1., & Maes, P. (2025). Your brain on chatgpt: Accumulation of cognitive
debt when using an ai assistant for essay writing task. arXiv preprint
arXiv:2506.08872.

Lahlou, S. (2025). Mitigating societal cognitive overload in the age of ai: Challenges and
directions. ArXiv, abs/2504.19990.
https: / /api.semanticscholar.org/CorpusID:278165081

Lee, H.-P. (, Sarkar, A., Tankelevitch, L., Drosos, L., Rintel, S., Banks, R., & Wilson, N.
(2025). The impact of generative ai on critical thinking: Self-reported reductions in
cognitive effort and confidence effects from a survey of knowledge workers.
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/3706598.3713778

Meyer, A. N., Fritz, T., Murphy, G. C., & Zimmermann, T. (2014). Software developers’
perceptions of productivity. Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 19-29.
https://doi.org/10.1145/2635868.2635892

Meyer, A. N., Murphy, G. C., Zimmermann, T., & Fritz, T. (2017). Design
Recommendations for Self-Monitoring in the Workplace. Proceedings of the ACM on
Human-Computer Interaction, 1(CSCW), 1-24. https://doi.org/10.1145/3134714


https://doi.org/10.1145/3695988
https://doi.org/10.1109/ms.2023.3242137
https://api.semanticscholar.org/CorpusID:278165081
https://doi.org/10.1145/3706598.3713778
https://doi.org/10.1145/2635868.2635892
https://doi.org/10.1145/3134714

DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 37

Nakamura, J., & Csikszentmihalyi, M. (2014). The concept of flow. In Flow and the
foundations of positive psychology: The collected works of mihaly csikszentmihalyi
(pp. 239-263). Springer.

Nguyen-Duc, A., Cabrero-Daniel, B., Przybylek, A., Arora, C., Khanna, D., Herda, T.,
Rafiq, U., Melegati, J., Guerra, E., Kemell, K.-K., et al. (2023). Generative artificial
intelligence for software engineering - a research agenda. Software: Practice and
Ezperience.

Noda, A., Storey, M.-A., Forsgren, N., & Greiler, M. (2023). Devex: What actually drives
productivity: The developer-centric approach to measuring and improving
productivity. Queue, 21(2), 35-53.

Nosta, J. (2025). Ai and the new impostor syndrome [Accessed: 2025-09-22]. Psychology
Today. https: / /www.psychologytoday.com/ca/blog/the-digital-self/202503 /ai-and-the-
new-impostor-syndrome

Organ, D. W. (1988). Organizational citizenship behavior: The good soldier syndrome.
Administrative Science Quarterly, 33, 331.
https:/ /api.semanticscholar.org/CorpusID:149987707

Ralph, P., Baltes, S., Adisaputri, G., Torkar, R., Kovalenko, V., Kalinowski, M., Novielli, N.,
Yoo, S., Devroey, X., Tan, X., Zhou, M., Turhan, B., Hoda, R., Hata, H., Robles, G.,
Milani Fard, A., & Alkadhi, R. (2020). Pandemic programming. Empirical Software
Engineering, 25(6). https://doi.org/10.1007/s10664-020-09875-y

Shihab, M. I. H., Hundhausen, C., Tariq, A., Haque, S., Qiao, Y., & Mulanda, B. (2025).
The Effects of GitHub Copilot on Computing Students’ Programming Effectiveness,
Efficiency, and Processes in Brownfield Programming Tasks.

Stadler, M., Bannert, M., & Sailer, M. (2024). Cognitive ease at a cost: LLMs reduce mental
effort but compromise depth in student scientific inquiry. Computers in Human

Behavior, 160, 108386.


https://www.psychologytoday.com/ca/blog/the-digital-self/202503/ai-and-the-new-impostor-syndrome
https://www.psychologytoday.com/ca/blog/the-digital-self/202503/ai-and-the-new-impostor-syndrome
https://api.semanticscholar.org/CorpusID:149987707
https://doi.org/10.1007/s10664-020-09875-y

DEVELOPER PRODUCTIVITY IN THE AGE OF GENERATIVE Al 38

Storer, K. M. (2025, March). How gen ai affects the value of development work [Accessed:
2025-09-22]. https://dora.dev/research/ai/value-of-development-work /

Storey, M.-A., Zimmermann, T., Bird, C., Czerwonka, J., Murphy, B., & Kalliamvakou, E.
(2021). Towards a Theory of Software Developer Job Satisfaction and Perceived
Productivity. IEEE Transactions on Software Engineering, 47(10), 2125-2142.
https://doi.org/10.1109/tse.2019.2944354

Storey, V. C., Yue, W. T., Zhao, J. L., & Lukyanenko, R. (2025). Generative Artificial
Intelligence: Evolving Technology, Growing Societal Impact, and Opportunities for
Information Systems Research. Information Systems Frontiers, 1-22.
https://doi.org/10.1007/s10796-025-10581-7

Sweller, J. (2011). Cognitive load theory. In Psychology of learning and motivation
(pp. 37-76, Vol. 55). Elsevier.

Sweller, J. (2024). Cognitive load theory and individual differences. Learning and Individual
Differences. https://api.semanticscholar.org/CorpusID:267955574

Sweller, J., van Merriénboer, J. J. G., & Paas, F. (2019). Cognitive architecture and
instructional design: 20 years later. Fducational Psychology Review, 31, 261-292.
https://api.semanticscholar.org/CorpusID:150705146

Wiltshire, G., & Ronkainen, N. (2021). A realist approach to thematic analysis: Making sense
of qualitative data through experiential, inferential and dispositional themes. Journal
of Critical Realism, 20(2), 159-180. https://doi.org/10.1080/14767430.2021.1894909

Zelenski, J. M., Murphy, S. A., & Jenkins, D. A. (2008). The Happy-Productive Worker
Thesis Revisited. Journal of Happiness Studies, 9(4), 521-537.
https://doi.org/10.1007/s10902-008-9087-4


https://dora.dev/research/ai/value-of-development-work/
https://doi.org/10.1109/tse.2019.2944354
https://doi.org/10.1007/s10796-025-10581-7
https://api.semanticscholar.org/CorpusID:267955574
https://api.semanticscholar.org/CorpusID:150705146
https://doi.org/10.1080/14767430.2021.1894909
https://doi.org/10.1007/s10902-008-9087-4

	Introduction
	Method
	Study Design
	Participants and Recruitment
	Procedure and Materials
	Data Analysis
	Analytic Strategy
	Analytic Rigour and Trustworthiness

	Ethics

	Results and Discussion
	The Re-Architecting of Developer Focus
	Elevation to Strategic, Systems-Level Thinking
	AI as Mentor, Collaborator, and Cognitive Partner

	The Shifting Definition of Productivity
	From Volume to Value and Impact
	From Raw Speed to Sustainable Flow
	The Contested Evidence on AI-Driven Speed

	The Double-Edged Tool of Agency
	Empowerment and Skill Enhancement
	Risk, De-skilling and Skill Atrophy


	Conclusion

